解答例
第1問
問題文からは難しそうに感じるが、問題をわざと複雑に見せたコケオドシだ。
条件Aを適用すると変数がaの一つだけになる。放物線同士が交点を持つか否かの判定をしていくが、二つの放物線の式を連立してg(x)として「-1≦x≦1においてg(x)≧0となるか」に落とし込むと格段にやりやすい。そしてaの値で場合分けしていく。
第2問
複素数平面。
(1)
Pは複雑な式で表されているが、角度を求めるために公式(α -z)/ (β -z)に当てはめて計算すると、45°で一定と分かる。角度が一定という事は、円周角の定理より、P, A, Bは同一円周上にあると分かる。さらに、t = 3のとき点Pは0だからこの円は原点を通る。
(2)
(1)で考察した図形的な解法のほか、絶対値を求めて微分する方法もある。
第3問
(1)
共通部分の面積は、「扇形A +扇形B -重複部分の三角形」で求めると速い。(2)で積分することになるので、三角関数を半角の公式で次数下げしよう。するとシンプルな式になる。
(2)
面倒な積分計算だが、工夫次第で手間と時間を節約できる。三角関数同士の積を見たら加法定理の逆を想定しよう。
第4問
整数と数列の融合。
(2)がやたら簡単なので(3)への布石であると分かる。「snが整数」「|βn| < 1」を確認した事で、αの数値を直接求めるのではなくsn を求めるのだと分かる。そこで(1)で得た漸化式とs1, s2, s3を用いて規則性を調べる。
第5問
確率の問題を全てクリアしないと極限の問題にたどり着けない。
(3)
そのままn→∞とすると、対数関数内が0になるので-∞/∞の不定形になる。
そこで対数関数の極限で定番の「定数の絞り出し」を行い、対数関数内が1になるようにすれば収束する。ここでは、対数関数内の各々の指数関数項の底を比べて、最も大きいものを絞り出す。
1992年度第1問でもこの手法を用いる。
第6問
随分とシンプルな問題文だ。当時の教育問題に絡んで有名な一題である。円に内接する正多角形を考察するのが自然で、正8角形や正12角形で証明できる。